III B.Tech-II Semester-Regular/Supplementary Examinations

March 2020

DIGITAL COMMUNICATIONS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \times 2=22 \mathrm{M}$
1.
a) What is the bit transmission rate of a PCM system if the number of quantization levels is sixteen and the maximum signal frequency is 4 kHz .
b) Draw the block diagram of DPCM and explain.
c) Draw the unipolar, polar, bipolar, and Manchester waveform for the message 10110100.
d) What is the probability of error of FSK system?
e) Sketch the diagram of discrete memory less channel.
f) Discuss about the different noise effects in Delta Modulation.
g) Define Shannon's theorem.
h) List any two properties of matched filter.
i) What are the advantages of convolutional codes compared to linear block codes?
j) What is the significance of survivor paths in convolution codes?
k) What are the decoding methods used for convolutional codes? Compare them.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Explain the working of DPCM transmitter and receiver with necessary block diagrams.
b) Explain in detail about Duo binary signaling. 8 M
3. a) Explain the Gram Schmidt Orthogonalization procedure.
b) Derive the expression for bit error probability of a coherent BFSK system.
4. a) Explain in detail slow hopping spread spectrum technique. 8 M
b) A DSSS system transmits at a rate of $1000 \mathrm{bits} / \mathrm{sec}$ in the presence of a tone jammer. The average jammer power is 20 dB greater than the average desired signal power. Find the required $\mathrm{E}_{\mathrm{b}} / \mathrm{J}_{\mathrm{o}}$ to achieve satisfactory performance is 10 dB .
5. a) State and prove the properties of mutual information. 8 M
b) In a discrete memoryless source X with four symbols $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ and x 4 with corresponding probabilities $\mathrm{P}(\mathrm{x} 1)=0.5, \mathrm{P}(\mathrm{x} 2)=0.25, \mathrm{P}(\mathrm{x} 3)=0.125$ and $\mathrm{P}(\mathrm{x} 4)=0.125$.
Calculate the efficiency using Shannon-fano code. 8 M
6. a) Draw the block diagram of the syndrome calculator for an (n, k) cyclic code and explain its working. 8 M
b) Assume a $(2,1)$ convolutional coder with constraint length 6. Draw the tree diagram and trellis diagram for the assumed coder.
